146 research outputs found

    Screened exchange corrections to the random phase approximation from many-body perturbation theory

    Full text link
    The random phase approximation (RPA) systematically overestimates the magnitude of the correlation energy and generally underestimates cohesive energies. This originates in part from the complete lack of exchange terms, which would otherwise cancel Pauli exclusion principle violating (EPV) contributions. The uncanceled EPV contributions also manifest themselves in form of an unphysical negative pair density of spin-parallel electrons close to electron-electron coalescence. We follow considerations of many-body perturbation theory to propose an exchange correction that corrects the largest set of EPV contributions while having the lowest possible computational complexity. The proposed method exchanges adjacent particle/hole pairs in the RPA diagrams, considerably improving the pair density of spin-parallel electrons close to coalescence in the uniform electron gas (UEG). The accuracy of the correlation energy is comparable to other variants of Second Order Screened Exchange (SOSEX) corrections although it is slightly more accurate for the spin-polarized UEG. Its computational complexity scales as O(N5)\mathcal O(N^5) or O(N4)\mathcal O(N^4) in orbital space or real space, respectively. Its memory requirement scales as O(N2)\mathcal O(N^2)

    Elliptic and Parabolic Boundary Value Problems in Weighted Function Spaces

    Get PDF
    In this paper we study elliptic and parabolic boundary value problems with inhomogeneous boundary conditions in weighted function spaces of Sobolev, Bessel potential, Besov and Triebel-Lizorkin type. As one of the main results, we solve the problem of weighted Lq-maximal regularity in weighted Besov and Triebel-Lizorkin spaces for the parabolic case, where the spatial weight is a power weight in the Muckenhoupt A∞_{∞}-class. In the Besov space case we have the restriction that the microscopic parameter equals to q. Going beyond the Ap_{p}-range, where p is the integrability parameter of the Besov or Triebel-Lizorkin space under consideration, yields extra flexibility in the sharp regularity of the boundary inhomogeneities. This extra flexibility allows us to treat rougher boundary data and provides a quantitative smoothing effect on the interior of the domain. The main ingredient is an analysis of anisotropic Poisson operators

    Reduction Methods in Climate Dynamics -- A Brief Review

    Get PDF
    We review a range of reduction methods that have been, or may be useful for connecting models of the Earth's climate system of differing complexity. We particularly focus on methods where rigorous reduction is possible. We aim to highlight the main mathematical ideas of each reduction method and also provide several benchmark examples from climate modelling

    Geometric blow-up of a dynamic Turing instability in the Swift-Hohenberg equation

    Full text link
    We present a rigorous analysis of the slow passage through a Turing bifurcation in the Swift-Hohenberg equation using a novel approach based on geometric blow-up. We show that the formally derived multiple scales ansatz which is known from classical modulation theory can be adapted for use in the fast-slow setting, by reformulating it as a blow-up transformation. This leads to dynamically simpler modulation equations posed in the blown-up space, via a formal procedure which directly extends the established approach to the time-dependent setting. The modulation equations take the form of non-autonomous Ginzburg-Landau equations, which can be analysed within the blow-up. The asymptotics of solutions in weighted Sobelev spaces are given in two different cases: (i) A symmetric case featuring a delayed loss of stability, and (ii) A second case in which the symmetry is broken by a source term. In order to characterise the dynamics of the Swift-Hohenberg equation itself we derive rigorous estimates on the error of the dynamic modulation approximation. These estimates are obtained by bounding weak solutions to an evolution equation for the error which is also posed in the blown-up space. Using the error estimates obtained, we are able to infer the asymptotics of a large class of solutions to the dynamic Swift-Hohenberg equation. We provide rigorous asymptotics for solutions in both cases (i) and (ii). We also prove the existence of the delayed loss of stability in the symmetric case (i), and provide a lower bound for the delay time.Comment: 69 pages. A notational misprint in equation (17) has been correcte
    • …
    corecore